Mobile Code Threats, Fact or
Fiction

Carey Nachenberg
Symantec AntiVirus Research Center
Cnachenberg@symantec.com

Presented at the International Virus Prevention Prevention Conference (1VPC), 1999

And posted with the permission of ICSA

Table Of Contents

TADIE OFf CONLENTS.......ceiueitirieiree ettt e ettt bbb bbb s bRt b bbbttt
INEFOAUCTION......eeetceee ettt bbb bbb bbbttt bbbt
Stationary Threats vs. Anonymous Threats
PAY 0G0 ClIBSSESuceeeeerererseetsisissesiessesssssssesssstsssessssssssesssssssesssssessssesssesesssssessssesssesssssssasasnssnsesnssesssnsesssnssnsesssnnsnsessnnnns
Y5 = Yoo T o= e T
Invasion of Privacy
DS 1= 0 S o ST

Signed vs. Unsigned Java.
JAVA BECK DOOIS......eeuietieirereeietsereeis ettt bbb bbb bbb b et es bbb
Javaand Maware
JAVA VITUSES.eteetereetsesiseis ettt st et a R AR e bbb et bbbttt
BrowsiNg-Serving ASYIMMELTYccceuririeeireseetetsesessssssssssessssessssessssssstessssssssesssssssessssssssesessssssssesssssssesssssns

ActiveX and Netscape Plug-ins

SIgNEA VS, UNSIGNEA ACLIVEX ...ttt s s s st sssseasssnsesssssnsnen
Malicious Mobile Code USiNgACLIVEX and PlUG-INS.......ccccvereerricerirsesesesesesssssesessssssssessssssssessssssssssens 11

ActiveX and the Browsing-Serving ASYMMELTYoccreureeerneeeensieessseessesessesessesesssssessssessssesssssssssssessssessees 12
SAFE FOF SCIIPLING .. eeveeeereereeeres ettt e ea bbb s s
JavaScript and VB Script
Signed JavaScript iN NetSCAPE NaVIGALO...........cc et sessessssessssssssns 13
JavaScript and VBSCIPt BACK DOOIS ..ot sisesisisesesissnses 13
JavaScript, VBScript and Maware
JaVaSCript @NA VBSCIIPE VITUSES.......cccucieirieeeeceie sttt s ssss et e sss st ss s sesssssassessssssssesnns
Word and EXCEl MaCrOS @NA BIOWSEIS.........ccreriurerieeirieeineteeseisess s isesss st sessssssssssssessisesssssssssssssssssssssssssssens 14
Anti-maware Technologies
SIGNBEUIE SCAINMNING.....veueereetresieseeeressssessesesssessssssssessesesssessssesssssesssssssssssssssnsesssssssesssssnssssssssssessssssssesassssssessssssssesasns
HEUITSHICS ..ottt sttt
Import Scanning
DIgital SIGNALUIES......cocvieeieeeeetreet ettt bbbt
URL and AttaChment BIOCKING........cveueiieetceeeee et ssssnnes 18
Behavior Blocking
Seven Suggestions for Safeguarding Y our COIPOIatioNcreereerreernieseriesesssesssessess s s ssessssenns
Run Anti-malware Software On All Desktops, Servers and GatewWays.........ccvveeevireresenenesessesesesssesesesssesenes
Install URL blocking software at the gateway or the desktop
Only Allow ActiveX From A Limited Set Of Authenticated Providers
Java, JavaScript and VBSCIPt SUGOESHIONS.......ccvuiiecieireieieisesste st sssss s sse st sssssssesssssssesssssssanes
Obtain the latest patches for your web browser and e-mail products...........cceeeeeevevecenneseenesesesesesesesens
Install Software To Filter Executable Files/Strip Macros From Incoming E-mail and HTTP Traffic 21
CONCIUSIONS....c.ereerteretieese et sese b seae s s bbb R bbbt bbbttt 21

Introduction

“Don’t run with scissors.”
“Don’t tease the animals.”
“Chew your food.”

As children, most of us heard advice like this more times than we care to remember. And while
it'sgood to be safe, let’ s be honest, kids will do what kids will do. There are obvious risks associated with
each of the above actions, yet most children grow up to be healthy adults, even after repeatedly violating
our parents' helpful hints. Ignore the warnings above and you'’ re subject to risk: tease the dog and he will
bite, swallow your food whole and you'’ Il choke; yet most of us have done these things and survived to tell
about it.

Browse the web and you'll get hit by malicious Java. Surf an unknown web-site and an ActiveX
component will send your spreadsheetsto Bulgaria. Some of the mobile code technol ogies emerging now
are chock-full of security holes— and pose as much risk to our computers as scissors do to our bodies.
Some of the technol ogies are better than others, but all have vulnerabilities that need to be understood if we
areto deploy them and want to maintain our company’ s security. The interesting thing is, while the
potential for danger is great, the number of recorded incidents of people affected by maliciousmobile code
is extremely small, in fact ZERO to date'!

While we have seen hundreds of “ proof of concept” malicious mobile applets, oneis hard-pressed
to find even one “wild” malicious mobile codeincident! At the Symantec AntiVirus Research Center
(SARC) we have never received amalicious Java or ActiveX program from any customer, corporate or
end-user. Infact, after two days of research, | could only find one fuzzy reference to a possible real-world
Javaor ActiveX-based attack.

Where does thisleave us? Given the dearth of confirmed, real-world attacks, this paper discusses
the future potential for attacks by each of the popular mobile code systems. Following this discussion of
threats, the paper will cover the available anti-malware technol ogieswhich can be deployed in the
enterprise to address these invaders. Finally, we will provide alist of increasingly obtrusive policy
suggestions on how to safeguard your organization from malicious mobile code. The solutions you choose
will based on the security requirements of your organization and on how obtrusive you are willing for your
solution to be to users and business partners.

Stationary Threats vs. Anonymous Threats

Why have we seen no “wild” attacks using mobile code such as Java, JavaScript or ActiveX when
there have been tens of thousands of confirmed “wild” attacks by computer viruses, worms (such as
HAPPY 99.EXE) and Trojan horses (e.g. PICTURE.EXE). We believe that the main reason for thislack of
real world mobile code attacks hasto deal with asociological effect rather than atechnological cause. To
understand this effect, let us classify mobile code threats into two sociological categories: stationary mobile
code and anonymous mobile code.

Malicious Java applets, ActiveX, JavaScript, Jscript and VBScript are all examples of stationary
threats. Thisterms means that the mobile codeis retrieved from afixed or stationary location - in this case
aweb-site - which can be tracked and has liability for any malicious content posted onthe site. Should an
end-user surf to asite and be targeted by malicious ActiveX, they could easily locate that site again and use
litigation to obtain compensation for any damage done by the malware. Unlike viruses, these types of

malicious mobile code don’t spread on their own and therefore need to be posted with intention on a
stationary site.

In the future, we can expect the number of stationary threatsto grow ", but still at amuch slower
rate than the observed growth-rate of viruses and anonymousthreats. The likelihood is that the biggest
growth of stationary threats will be due to professional scams. For example, a con artist might set up aweb
site with a similar name to an existing banking web-site: www.citybank.cominstead of www.citibank.com
If auser inadvertently surfsto this site, the scam artist can provide fake login screens and obtain the user’s
banking information. This can then be used to steal money fromthe user’s account and shortly after, the
scamrartist and his web-site will disappear. These professional scamswill grow in number as more
mal evolent people recognize the spoilsthat await them on the Internet.

How about anonymous threats? Anonymous threats are those threats which are delivered in such
afashion that the receiver of the mobile code cannot identify the origin of the threat or assign liability to
any one person. Computer viruses and worms fall under this category, since they can spread on their own
and itisdifficult to track their origin. Furthermore, Trojan horse programs which are delivered in
anonymous e-mail or on the Internet USENET news groups also fall into this category. Using these
avenues of distribution, it is virtually impossible to determine where these threats came from making
malicious individuals are more inclined to distribute their malware. We expect the number of anonymous
threats to grow, and the number of users actually hit by these threatsto grow aswell (most of the users just
logging onto the Internet for the first time are novices and have not been trained in safe computing
practices.)

In addition to the obvious anonymous threats, such as Trojan horses sent in anonymous e-mail,
there are anumber of anonyrmous threats which can be distributed in such away that they appear to be
stationary; this may give the end-user or corporate user afalse sense of security. For example, amalicious
individual can obtain a personal web-site from companies like GeoCities. Theindividual hasto provide
little, if any, identifying information to GeoCities to obtain his or her own web site. Theindividual can
then distribute a malicious ActiveX or Java applet on their web page and have virtually no risk of being
caught. 1f someone realizestheir web-site harbors malicious code, they can disappear and start a new web
site with another host.

The HAPPY 99.EXE worm is another example of an anonymous threat which guisesitself asa
stationary program. When executed on an uninfected system, thisworm will install itself into the user’s
operating system. The next time the user sends e-mail, the worm appends itself to the e-mail as an
attachment. When the recipient receives the e-mail, they assume the attachment is alegitimate program
from their friend and feel little or no risk in running the HAPPY 99 program. Ironicaly, thisfeeling of
security - “1f my friend tried it and sent it to me, it must be OK” — makes people moreinclined to run the
program and spread the threat.

Since Java, ActiveX, JavaScript, JScript and VBScript are inherently delivered from stationary
sources (i.e. web-sites), the liability aspect will definitely limit the growth and severity of these threats. As
we will see, anumber of technologies such asdigital certificates and code signing have been built to ensure
that the web-going public can identify the source of web-based content. While these technol ogies cannot
prevent attacksin astrictly technological way, they definitely reduce the likelihood of mainstream attacks
based on largely sociological grounds.

Payload Classes

Malicious mobile code can be categorized into three different classes based on itspayload. The
term payload is used to describe the malicious behaviors that the mobile code performs which is not
authorized by the user. "

System Modifications

Any mobile code that modifies the client’ s computing environment can be said to perform system
modifications. These system modifications can be as simple as deleting afile or as complexasinstalling a
virus or worm into the client operating system. The following areas of the computer can be modified or
destroyed by mobile code:

1

W

No g

o

10.
11.

12.

13.

The malware can alter the system registry.

The malware can specify which files to launch during start-up.

The malware can modify batch filesand .SY Sfiles, such as AUTOEXEC.BAT or
CONFIG.SYS.

The malware can delete, format or modify the contents of the hard drive.

The maware can re- partition the hard drive.

The malware can update or subvert the machine' s web browser security settings.

The malware can introduce additional ActiveX and Java components to the system to produce
back doors for future attacks.

The malware can subvert anti-virus software which is not aware of the new mobile code
threat.

The malware can modify or delete the contents of other file servers or peer to peer servers
depending on their security settings.

The maware can be re-write flash BIOS chips.

The malware can introduce a virus, worm or logic bomb by modifying existing system files or
adding new system files.

The malware can modify data filesto cause an application to behave in an unanticipated way.
For instance, the Chaos Computer Club posted a demonstration ActiveX program which
would update Quicken’s datafilesto cause Quicken to transfer funds during the next on-line
transaction session.

The malware can modify the public and private key information found on the machine.

Aswewill see, different mobile code systems have different security infrastructures which either
hamper or facilitate the modification of the client computer’s resources. Not all classes of mobile code can
perform all of the above attacks.

Invasion of Privacy

In addition to destroying or modifying data, mobile code can export information from an affected
system to any number of destinations on the Internet. Maware such as PICTURE.EXE have demonstrated
how easy it isto launch thistype of attack . In general, the following types of information can be exported
by mobile code:

1

2

w

o

Documents, spreadsheets, databases and other data files— such as Quicken files and graphics
files- can be exported.

Windows passwords and other passwords can be found on the hard drive or obtained via“key
grabbing” malware. ¥

Conversations can be recorded via now-standard PC microphones.

The malware can export alist of the software (and their version numbers) being used on a
machine for advertising and demographics purposes.

The malware can export the public and private key information found on the machine.

The malware can determine which web sites you have surfed to and what information has
been sent to these sites.

The malware can forge an e-mail from your e-mail account and send it to any number of

people.

Again, different mobile code systems have different security infrastructures which will affect
malicious software’s ability to export information from atargeted computer. Not al classes of mobile code
can perform each of the above attacks.

Denial of Service

Denial of service describes a set of attacks which prevent a client computer from performing its
usual duties, due to the actions of malicious mobile code. Most of the malicious Java applets we have seen
have implemented denial of service attacks. These appletswill attempt to allocate all available memory or
create thousands of windows on the client machine to prevent other programs from running properly.
Other malicious code may attempt to close the Internet connection if the user surfsto a specific site or tries
to read hisor her e-mail.

While denial of service attacks can be carried out by virtually all of the mobile code types, most
denial of service attacks have been implemented in Java. Java, aswe will see below, isafairly secure
mobile code platform and many of the more malicious attacks (such asinvasion of privacy or system
modification attacks) are impossible to implement. Consequently, malware authors have implemented the
easier-to-program denial of service attacksin Java.

Threat by Platforms

Java

Let’s examine how Java applets are used by the client computer in atypical web browsing
situation:

1. Theweb browser connects to aweb-site server, for instance www.javathreat.com

2. Theweb browser downloads the appropriate web page, for instance main.html ; the web page
contains areference to aJavafile or aJavaarchive ((JAR) file which can contain multiple
pieces of aJavaapplet aswell asdigital certificate information.

3. Theweb browser downloads the appropriate Javafile or JAR file.

4. If theappletisprovidedin aJAR file, the web browser checksto seeif adigital certificateis
included.

5. Based on the security settings of the browser, the validity of the digital certificate and
possibly the client user’ sinput, the Java applet is either accepted or rejected.

6. Thebrowser then inspectsthe “byte code” contents of the applet to verify that it adheresto
Java standards and doesn’t try anything malicious.

7. If the applet meets security requirements, the web browser |oads the Java applet into the Java
virtual machine (sandbox) and runsit.

8. TheJavacodeisnot permanently maintained and must be re-downloaded during subsequent
surfing sessions to be used.

Now that we have an understanding of how Java content is used during web surfing, let’s examine
its potential as a carrier malicious mobile code.

Java has received the short end of the stick when it comesto its perceived risk in the enterprise.
It’ s unfortunate because Javarunning in a properly configured web browser is by far the safest type of
mobile code available today and was designed from the ground up to provide robust security.

With all this security, why does Javareceive such abad rap? Asthe first mainstream mobile code
system which attempted to address security issues, it has come under agreat deal of scrutiny. From
February of 1996 to August of 1997, thirteen different security holes were found in various
implementations of Java."' The vast majority of these security holes were due to improper implementation

rather than afundamental design flaw in the Java language/system. This fact surely comforts the designers
of the Java system but may not be consolation for system administrators.

The Java security model was designed to protect users against the two most dangerous classes of
attacks described above: namely invasion of privacy and system modifications. While Java provides robust
protection against these attacks, it provides little or no protection against denial of service attacks. Thisis
why most of the malicious Java appl ets posted to the web implement simple denial of service attacks.
Unfortunately, the thirteen security holes mentioned above addressed more serious flaws in Java
implementations (such as Navigator and IE) which allowed invasion of privacy and system modification to
take place.

The question arises: |'s Java safe enough for my enterprise? Unfortunately, it’sdifficult to givea
yes or no answer to this question. Researchers continue to find holesin Java security, albeit at afar slower
rate”", which pointsto an increasing level of security and robustness of the Java platform and its
implementations. Given the dowdown in discovery of new security holes, it isour belief that Java
running under a properly configured web browser providesa very secure environment for mobile
codewith respect to both invasion of privacy and system modification attacks. If thisisyour primary
concern, allowing Javainto your enterprise is asafe bet. However, if you are concerned about your users
encountering denial of service applets, you should think twice about implementing Java. Java has been and
continues to be susceptible to awide variety of these attacks. Luckily, terminating the web browser or
rebooting the system can easily deal with any of the denial of service attacks.

Signed vs. Unsigned Java

Signed Java describes Java applets which are accompanied by adigital signature or certificate
information, allowing the client to determine the origination and authorship of the applet. The digital
signature allows the web browser to certify that the Java applet’ s binary contents match 100% with the
applet originally signed by the software provider. Depending on the security settingsin the browser, the
administrator (or end-user) can allow such signed appl ets to have extensive accessto the local computer
and the network. For more information on code signing and digital certificates, see the Digital Sgnatures
section below. In general, the administrator or end-user can permit signed Java applets to do any of the
following to a host system*"":

Read files on the client file system.

Writefilesto the client file system.

Deletefiles on the client file system.

Renamefiles on the client file system.

Create adirectory on the client file system.

List the contents of a directory.

Check to see whether afile exists.

Obtain information about afile, including size, type, and modification timestamp.

Create a network connection to any computer other than the host from which it originated.

0. Listen for or accept network connections on the client system.

1. Create atop-level window without an untrusted window banner. (All windows created by an
applet are labeled asinsecure so the user knows where they came from.)

12. Obtain the user's username or home directory name through any means.

13. Define any system properties.

14. Run any program on the client system.

15. Makethe Javainterpreter exit.

16. Load dynamic libraries (DLLs) on the client system.

17. Create or manipulate any thread that is not part of the same applet.

18. Install permanent new Java components on the system.

RRPOWONS OR~WDNE

Unlike signed applets, unsigned Java applets are not accompanied by signature or certificate
information. Consequently, these applets are treated with the highest level of security when running in the
web browser, since their origin and author cannot be verified. Unsigned Java applets are restricted from
accessing any of the resources listed above and are terminated immediately if they attempt any access.
Thereis one exception to this, as you will read below.

Java Back Doors

For Java applets to properly run, they must rely upon a number of built-in Java modules which are
typically installed during installation of the web browser. These built in modules provide many of the basic
functions that Java applets need to work properly, such as popping up windows, displaying graphics,
opening files, opening network connections, etc. These modules integrate with the web browser and are
specifically designed to be secure and not open up any holesto the client computer. For instance, any time
an applet triesto use a built-in module to open afile, the module will check the security level of the applet
and deny the request if its security is not appropriate (in the case of an unsigned applet, the request to open
afile would always be denied).

While the modules that ship with common web browsers are considered very safe, it is possible
(and actually very easy) for Java developersto install their own built-in modules and compromise security.
Standard browser implementations of Javawill allow Java applets to use any and all installed Java modules
aslong asthey arein one of aspecified set of directories called the CLASSPATH. Specifically, developers
can add their own home-brewed Java modules to a computer and then set an environment variable, called
CLASSPATH, to point to the directories where these modul es are stored. Here' s an example of how one
might set a CLASSPATH variablein the AUTOEXEC.BAT:

SET CLASSPATH=C:\MyClasses; C:\OtherClasses

This CLASSPATH tells Java development environmentsand Java browser s that they can find
additional Java modulesin the C:\MyClasses directory, aswell asin the C:\OtherClasses directory.

Common web browsers allow a Java appl et to use any Java modules that are in directories
specified by the CLASSPATH asif they were tested, secured modules. Unfortunately, Java devel opers can
install (to these directories) any number of modules that have not been scrutinized and may open up
numerous security holes. For instance, a Java developer may create a Java modul e that can update the
registry. If the developer placed this module in adirectory specified in the CLASSPATH, so his other Java
programs can use it, he would also implicitly grant accessto any Java applet from the web that wanted to
use the functionality aswell! If an attacker knew that the user had this module on his machine, the attacker
could design an applet which will call upon this module to update the client computer’ s registry!

There are several possible waysto defend against such a CLASSPATH attack:

1. Certify the security of all Javamodulesin the CLASSPATH of agiven computer.

2. Disalow computerswith a CLASSPATH variable (i.e. those that have Java development
environments or other Java applications) from using Javain the web browser.

3. Make sure to erase the CLASSPATH variable before web browsing, and reset it after
browsing.

Thishole constitutesareal potential threat to web surfing users, although thelikelihood that
it will be exploited isvery small. Thisisone of the only serious Java holes which hasnot been fixed.

Java and Malware

Aswe have seen, unsigned Javais a safe medium and is designed to make the two worst types of
attacks - system modification and invasion of privacy - virtually impossible. For thisreason, the biggest

threat from Java has been, and continuesto be, denial of service attacks. The author has been unable to
locate denial of service attacks outside of research web sites and believesthat thisisavery low risk.

Unlike unsigned Java, signed Java provides amuch larger risk to corporations and end-users. Like
ActiveX, signed Java can access many sensitive areas of the computer without restriction and can
implement system modification and invasion of privacy attacks. Therefore, from a strictly technical
point of view, signed Java does pose a risk to corporationsand end-users.

Luckily, Javamalware is by definition astationary threat, and as such, ensures a certain amount
of liability for the web site operator who postsit. We believe that thisliability will help to curb the growth
of Javamalware going forward. But it isby no means a guarantee of safe computing.

Java Viruses

A Javavirusfallsunder the category of a system modification attack sincethe virus must
modify the client system in order toinfect it. A Javavirusmay also fall under the other malware
categories, depending on itspayload. Since Javaisvirtually immuneto system modification attacks,
Javaviruses, aswewill see, arenot aviablethreat to the end-user or enterprise.

To date, we have seen three viruses written for the Java platform: Strange Brew, JavaVirus and
BeanHive. Fortunately, thefirst two of these Java viruses (Strange Brew and JavaVirus) are completely
neutered by the standard security provided by the popular web browsers. These viruses attempt to open
files, which is strictly forbidden by the Javaimplementations of the major web browsers, and are
immediately terminated.

Thethird virus, BeanHive, is actually delivered as a signed Java applet. Signed Java applets can
explicitly request access to the client computer’ s files and other resources. The BeanHive virus does just
that; it requests permission to modify files on the system as soon as it is downloaded to the user’s
computer. When the virus makes this request, the user is provided with a dialog box and can choose to
grant or disallow the access. Therefore, for the BeanHive virus to spread, the web-browsing user must
explicitly grant accessto the digital certificate that accompanies the infected Javafiles. If the user does
grant access, the virusis able to open and infect files on the client computer. However, dueto bugsin the
virus, these infections are unabl e to properly spread on their own and constitute no threat to the user. If the
user does not explicitly grant access, the virusisimmediately terminated in the web browser.

Evenif aviruslike BeanHive did infect other Java applets properly, it would run into additional
problems. If such a Java virus were to |ocate another signed applet and modify it, then the just-infected-
applet’ s binary contents would no longer match the contents of the digital signature . Consequently, if this
newly infected applet were downloaded to another user’s computer, its signature information would be
invalid and it would be prohibited from running. The only way such avirus could spread would be to target
Javadevelopers computers. If the virus could somehow infect Java appletsbefore they were signed, then it
might have achance of spreading. Luckily, thisisan unlikely scenario.

In general, Javaviruses present little risk to the web-surfing public. Specifically, if auser
downloads an unsigned Java appl et that has been infected by a Javavirus, they are at no risk since unsigned
applets cannot accessfiles. On the other hand, if the virus comesin as asigned applet, thereisahigher
degree of risk. If the user givesthe applet accessto his/her local system, then any number of attacks are
possible, including virus attacks. However, as we have seen and will seein the next section, even with full
access to acomputer system, Javaviruses are unlikely to spread.

Browsing-Serving Asymmetry

Today most end users don’t run their own web sites directly from their home computer. So while
aJavavirus might find its way onto an end user’s computer, it will quickly find that it has nowhere to

spread (beyond, perhaps, the browser’ s cache directory). The typical end-user’s computer has virtually no
Java applets that the virus could infect, since the typical end-user doesn’t run aweb-site on the computer
they surf theweb from. Thiswill limit the ability for amobile code virus (Java, ActiveX or HTML script-
based) to spread. We call this phenomenon the browsing-serving asymmetry.

While thisasymmetry will limit the spread of Java virusestoday, Javavirusinfections could well
grow in the future as more users obtain continuous cable or DSL-based connections to the Internet. When
continuous connections become the norm, users will most likely use their machines to both surf the web
and host their own web sites. As aresult, the user may have a number of Java applets on his/her computer;
thiswill provide a Javavirus with a healthy supply of filesto infect.

Consider what would happen if such a user browsed aweb page that contains aviral Java applet.
This applet would be downloaded, run on user’ s machine and could locate and infect a new Java applet that
was part of the user’s home page. If a second user then browsed the just-infected home page (i.e.
downloads a newly-infected Java applet), this second user will then have their web page infected, and so
on. Inasense, mobile code viruses are ahead of their time — their ability to do widespread damage is more
likely to be brought on by advancesin technology rather than by any further “enhancements” to the viral
code by humans.

ActiveX and Netscape Plug-ins

Let’sexamine how ActiveX components are used by the client computer in atypical web
browsing situation:

1. Theweb browser connectsto aweb-site server, for instance www.activexthreat.com

2. Theweb browser downloads the appropriate web page, for instance main.html ; the web page
contains areferenceto an ActiveX file or an archive .CAB file which can contain multiple
pieces of an ActiveX component.

3. Theweb browser checksto seeif the ActiveX component is already on the client system. If
the ActiveX component is already on the client system (it was downloaded in an earlier
session), then skipto step 7.

4. Theweb browser downloads the appropriate ActiveX file or CAB file.

5. Theweb browser checksto seeif adigital certificateis attached to the ActiveX component.

6. Based on the security settings of the browser, the validity of the digital certificate and
possibly the client user’ sinput, the ActiveX object is either accepted and installed, or rejected.

7. Theweb browser runsthe ActiveX component as specified by the web page (e.g. main.html).
The ActiveX component is a 32-bit Windows program which has the same control of the
computer as any Windows program.

8. Once the component has been downloaded and installed, the ActiveX remains on the client
machine and doesn’t need to be downloaded or re-installed when it is used by other web
pagesin the future.

Now that we have an understanding of how ActiveX content is used during web surfing, let's
examineits potential as a carrier malicious mobile code.

ActiveX and Netscape plug-ins are the most danger ous of all mobile code.

That said, the Symantec AntiVirus Research Center has not received a single report of an actual
ActiveX/plug-in malware or virus attack. Thisis a case of potential threat vs. actual threat. The potential
threat from ActiveX/plug-insis great, yet the actual threat has been non-existent.

ActiveX components are basically 32-bit Windows programs. When a user surfsto aweb page
which has one or more ActiveX components, these components are downloaded and run on the user’s
computer. Once an ActiveX component has been accepted on your computer, it hasno restrictions like

those enforced by Java; it has free reign of your machine. Also, unlike Java applets, once an ActiveX
component has been downloaded and installed on your computer, it remainsinstalled until it isexplicitly
removed. This means that a browsing session can expose a computer to danger long after the browsing
session has ended.

Netscape Plug-ins are Windows programs which are designed to integrate directly with Netscape
Navigator. Like ActiveX, oncethey areinstalled, these plug-ins have accessto the entire computer system
and can perform any number of malicious actions. Unlike ActiveX, Netscape plug-ins do not have any
code signing facility, so the user cannot verify who or where a plug-in came from. Luckily, Navigator will
always prompt the user before installing such a plug-in. However, once aplug-inisinstalled, Navigator
will not warn the user when its functionality is used or exploited by aweb-page.

Signed vs. Unsigned ActiveX

In order to stem the threat of malicious ActiveX code, Microsoft has vigorously promoted code
signing for ActiveX. A signed ActiveX component isone which isaccompanied by adigital signature or
certificate information, allowing the client to determine the origination and authorship of the component.
The digital signature allows the web browser to certify that the ActiveX component’ s binary contents
match 100% with the ActiveX component originally signed by the software provider (thisisdoneviaa
hashing function). Depending on the security settingsin the browser, the administrator (or end-user) can
allow such signed ActiveX componentsto either have no access or total accessto the client machine. For
more information on code signing and digital certificates, see the Digital Signatures section below.

With regards to Internet surfing, Microsoft Internet Explorer offers the following default security
settings for ActiveX:

1. Refuseall unsigned ActiveX by default.

2. Allow al signed ActiveX components, prompting the user before allowing one to be run.

3. Allow JavaScript and VBScript programsto use functionality from all signed ActiveX
components that are marked safe for scripting.

If the user chooses to allow anew ActiveX component onto the system, that component will be
installed permanently. If the user visits the same web-page at alater time, they will not be prompted to give
access to the ActiveX component; access will be granted automatically. Furthermore, if when granting
access to asigned ActiveX component, the user selects“ Always Trust Content,” then all subsequent
ActiveX components from the signer in question will be downloaded and given full accessto the system
without further prompting or notification (during this and subsequent browsing sessions).

The default security policy in Internet Explorer puts the end-user in the driver’s seat; the user is
prompted to decide whether or not to allow ActiveX onto their machine. Thisisobviously alessthan
desirable in the corporation (or at home), since end-users are rarely able to decide whether or not content is
harmful or not. Luckily, Internet Explorer allows the administrator to pre-configure settings and take such
choices away from the user.

Malicious Mobile Code UsingActiveX and Plug-ins

ActiveX and plug-inscan be used to implement virtually any type of malicious code. Once
either of these components has been downloaded and installed onto the client computer, it hasfull
accessto the machine.

It isinteresting to note that we have seen very few denial of service attacks with ActiveX (in stark
contrast to the number of these attacks we’ ve seen in Java). In fact, the only such attack that the author
could locate was the ActiveX Internet Exploder control. This ActiveX component shuts down the client
system when atainted web page is visited. It is certainly possible to implement denial of service attacks

with easein ActiveX; however, virtually every proof of concept attack we have seen attempts to perform
system modification or invasion of privacy. Why have we seen so few denial of service attacks
implemented in ActivexX?

The scarcity of these attacks can be attributed to sociological rather than technological reasons.
These attacks are simply too easy to program, and at this point in time, virtually all mobile malware codeis
being built as proof of concept. Just as Einstein would not be interested by Newton’ s apple-dropping
experiment, malware authors have little or no interest in producing trivial denial of service ActiveX
components. However, if and when hostile companies or foreign nations decide to use ActiveX as an
offensive medium, we can expect to see this type of attack grow in prevalence.

Viruses

Given that one can implement virtually any type of malwarewith ActiveX and Netscape
plug-ins, it iscertainly possibleto createan ActiveX or plug-in-based virus. However, to date, we
have seen no ActiveX or plug-in viruses of any type.

While we have seen no such viruses, it isimportant to note that both ActiveX and Netscape plug-
ins are essentially standard Windows programs and both can be infected by dozens of existing Windows
viruses. If an ActiveX component were infected with such avirus, once downloaded, the virus could
spread to other Windows executables on the client’ s computer, to the local area network and beyond. This
isthe most likely way that avirus could gain entrance to a client computer via ActiveX or a Netscape plug-
in.

Like Javaviruses, a native ActiveX virus would probably have a hard time spreading in today’ s
computing environment *. There are two reasons for this; the first has to two with the browsing-serving
asymmetry discussed below. The second hasto deal with the nature of signed ActiveX:

If anative ActiveX virus were to locate another signed ActiveX component and modify it, then the
just-infected-component’ s binary contents would no longer match the contents of the digital signature.
Consequently, if this newly infected component were downloaded to another user’s computer, its signature
information will beinvalid and it would be prohibited from running. The only way such avirus could
spread would beto target ActiveX developers' computers. If the virus could somehow infect ActiveX
components before they were signed, it might have a chance of spreading.

ActiveX and the Browsing-serving Asymmetry

Today most end users don’t run their own web sites directly from their home computer. This
means that while the end-user may have many ActiveX componentsto infect, no other web-surfer will ever
run into these infected components. What happens if the end-user downloads an ActiveX virus? The virus
would immediately infect all of the ActiveX components on the computer. Then where doesit go?
Nowhere. Thiswill limit the ability for an ActiveX virusto spread. We call this phenomenon the
browsing-serving asymmetry.

While this asymmetry will limit the spread of ActiveX virusestoday, ActiveX virusinfections
could grow in the future as more users obtain continuous cable or DSL-based connectionsto the Internet.
When continuous connections become the norm, users will be more inclined to use their machines to both
surf the web and host their own web sites. Consequently, if auser downloaded and ran an ActiveX virus, it
would infect a number of ActiveX components— some of which might be part of the end-user’ s own web
page. If other users then connect to this user’ s web-site, they may inadvertently download infected Activex
components, spreading the virus.

Safe For Scripting

When programming anew ActiveX component, developers can mark their component as safe for
scripting. If an ActiveX component is marked as safe for scripting, onceit isinstalled on the client’s
computer, any JavaScript or VBScript programs can call upon its functionality from within the web
browser without any security restrictions. Such safe for scripting components are very useful since they
permit the less powerful VBScript and JavaScript languages to implement many complex features that
could only be implemented by acomplex ActiveX (Windows) logic.

Thereisonebig problem with ActiveX componentsthat are marked safefor scripting.
Should an end-user trust an ActiveX developer to properly “bullet-proof” their ActiveX control?
Oncesuch acontrol isinstalled in theclient’s system, any JavaScript or VBScript from any web ste
can useitsfunctionality in any way it likes!

For instance, what if a devel oper were to build a safe for scripting ActiveX component that allows
the user to download a graphicsfile, saveit to any filename they liked and then view it? This component
seems safe enough if used by non-malicious JavaScript. But malicious JavaScript might be able to use this
component to save agraphicsfile over the CAAUTOEXEC.BAT file. Or amalicious VBScript program
could use it to save a corrupted image over the windows background graphicsfile. Either of these attacks
could cause the machine to crash during startup, and far more malicious attacks are possible!

In general, marking an ActiveX component safe for scripting is avery dangerous proposition.
Unless the component was impeccably designed, it may have security vulnerabilities and could be
exploited by malicious or even just buggy JavaScript or VBScript.

JavaScript and VBScript

JavaScript and VB Script are programming languages which provide robust functionality to web
pages. Web page authors can embed JavaScript and VB Script programs directly into their web pagesto
animate graphics, check fields of data submitted viaweb page formsfor correctness, etc. Whilethese
script languages were designed to provide only limited functionality, researchers have found a number of
vulnerabilities which allow malicious code to be written. Asof thetime of thiswriting, all of the known
holes have been plugged, making JavaScript and VBScript largely safe mobile code mediums, if the
web browser isconfigured appropriately. It isimportant to notethat JavaScript/VBScript can be
used in conjunction with ActiveX and can exploit your computing environment!

Signed JavaScript in Netscape Navigator

Like Java applets, JavaScript programs can be signed in Netscape Navigator version 4.0 and above
to ensure security. If aweb surfer allows asigned JavaScript program onto their computer, this program
can request additional accessto the computer and escape the JavaScript sandbox (Whichissimilar to the
Java sandbox). In order for signed JavaScript programs to obtain more access to the computer, they must
make use of JavaviaNetscape's LiveConnect technology. LiveConnect isacommunications mechanism
that can be used to allow different types of mobile code to work together; in this case, Java and JavaScript.
Unlike traditional JavaScript which is embedded directly in web pages, signed JavaScript is delivered
inside of a.JAR archivefile and are linked to from the base web page.

JavaScript and VBScript Back Doors

Asdiscussed in the ActiveX section of this document, it is possible for ActiveX programmersto
specify that their components are safe for scripting. Once an ActiveX component has been marked in this
fashion and installed on a client computer system, its functionality can be used by any JavaScript or

VBScript programs without any security notifications to the user. Furthermore, these JavaScript/V BScript
programs can come from any web-site and still use the features of the ActiveX component; the scripts do
not have to come from the same web-site as the ActiveX control to make use of it.

Thisposesno risk if the safe for scripting ActiveX componentsinstalled on the client computer
have been appropriately tested and secured. However, if the components are not properly designed or are
buggy, they can be exploited by malicious or poorly designed script logic. In essence, by installing an
ActiveX component marked safe for scripting, Internet Explorer users are potentially opening up a back
door into their system.

JavaScript, VBScript and Malware

Aswith the other mobile code attacks, the Symantec AntiVirus Resear ch Center hasno
recorded JavaScript or VBScript malwareincidentsto date. However, anumber of proof of concept
attacks have been demonstrated since the introduction of these scripting languages.

Researchers at the Open Research Institute (www.opengroup.org) and Bell Labs have uncovered a
number of holesin the JavaScript language. The researchers built a JavaScript program which could
monitor web usage, even after the user left the page that delivered the malicious script. This script could
monitor all visited URLSs, the values of fieldsthat werefilled in (with contents such as passwords), etc.

The same researchers discovered other vulnerabilities, including one which allowed the script to send a
directory listing of the client’ sfilesto an attacker. Finally, the group found that JavaScript could be
programmed to forge e-mail messages from the client user.

Today, al of the known holes have been plugged and new holes are being found at a much slower
rate. Thiswould imply that most of the holesin these two systems have been located and removed, but
there are no guarantees. It isimportant to note that both JavaScript and VB Script can be used to access files
and other resources on the client computer — if given permission to do so by the user; however, browsers
can be configured to automatically deny this access.

JavaScript and VBScript Viruses

To date, two VBScript viruses (which work under Internet Explorer) have been written (there are
no known JavaScript virusesto date). Thefirst such virusiswrittenin VBScript and embedded at the top
of aninfected web page. When an infected web page is downloaded, the virus runs and attemptsto locate
other HTML pages on the client computer. If it finds such aHTML file, it will prepend itself to the new
web page. When trying to get access to the files on the hard drive, the virus triggers Internet Explorer’s
security “and the user is asked if they would like to allow the action to continue. If the user says no, the
viruswill fail. Otherwise, the VB Script will locate other web pages on the local drive, if there are any, and
infect them.

While this virus cannot spread without the express permission of the user, it still poses a security
risk. Usersaren't prompted “ Do you want the virusto run?’ Instead, they’ re prompted with a message
like, “Do you want to allow this VBScript program to access files.” Such a question might have an obvious
answer to the power user, but will make little if any senseto the average end-user. Consequently,
JavaScript and VB Script should be used with care in the corporation and the home. Fortunately,
corporations can configure VBScript to automatically deny such operations without the consent of the
employee.

Word and Excel Macros and Browsers

Recently, there has been agreat deal of news about Word and Excel mobile code attacks. The
“Russian New Year” attack, described by Finjan Software, is one such attack which was received attention.
The basic idea behind these attacksis as follows:

1. A user haslnternet Explorer and Microsoft Office installed on their machine.

2. Theuser surfsto aweb page that has an embedded Microsoft Office document (such asa
Word or Excel document) with macros.

3. Under certain configurations, Internet Explorer will automatically download the embedded
document/spreadsheet and run its macros or formulas without any notification to the user.

4. These macros/formulas run with the same privileges as the user and can delete files, send e-
mail, open up Internet connections, etc.

In apaper authored by John Morar and David Chess at the 1998 Virus Bulletin Conference, the
authors described how atypical installation of Internet Explorer and Microsoft Office could cause a
computer to be susceptible to such an attack *"":

1. Install Windows 98.

2. Install Microsoft Office 97 Professional, Service Release 1, and accept all of the defaultsfor a
typical installation. While using Word on local files, click on the check box that offersto stop
reminding you every time you open alocal Word file which contains macros. (Note: The
Russian New Y ear exploit will work without prompting the user even if the user does not
disable the macro reminder featurein Excel!)

3. During the office install ation, PowerPoint, Excel and Word were registered for immediate
execution, so when auser clickson alink to a Word document, you are only depending on
Word itself to warn you about macros, however, that warning was turned off in the previous
step by auser who wastired of being reminded every time he opened a macro-containing file
locally. Now, documents behind Web links are opened in Word without any prior
notification.

Note: Internet Explorer can be configured to prompt before execution, by checking ‘ Confirm open
after download’ for each of the major file types (see Windows Explorer: View® Folder Options® File
Types.)

These attacks are documented and real and should be considered a potential threat.
However, aswith virtually every other form of malicious mobile code, we have never seen thishole
exploited for an actual attack. It hasonly been demonstrated asa proof of concept by resear chers.

Anti-malware Technologies

Signature Scanning

Signature or “fingerprint” scanning isthe oldest and most mature of the anti-virus technologies. In
general, signature scanning can only be used to detect known, pre-analyzed malware threats and is unable
to detect new or unknown threats.

To discuss the effectiveness of fingerprint scanning, let’ s segment malware threats into two
different groups: immediate payload threats and delayed payload threats.

Immediate payload threats are those pieces of malware whichdrop their payload or cause harm
almost immediately. Harm can be caused in any number of ways, not just data destruction:

1. System modification attacks, including destruction of data, datadiddling, etc.

2. Invasion of privacy attacks, including sending information or user files over the web.

3. Denial of service attacks, such as crashing the machine, causing network congestion or
bringing the network down (worms)

Most Trojan horse programs and proof of concept ActiveX and Java malware can be considered
immediate payload threats because they do their damage as soon as they are invited onto a system and
executed. Also, someworms can also be considered immediate payload threats since they may overly
congest or bring down the network in trying to spread, whether or not they have a secondary payload.

In contrast, delayed payload threats are those malware programs that do not do significant damage
to computing systems or do their damage after an extended period of time following initial infection. Many
computer virusesfall under this category; they may infect a system and spread from file to file but will not
cause significant damage immediately (until, for instance, March 6 in the case of the Michelangelo virus).

Signature scanning can be an effective technology for detecting and removing delayed payload
threatsif the payload delay timeislonger than the time it takes anti-virus researchers to obtain a sample of
the threat and distribute asignature. Signature scanning is useless against immediate payload threats and
delayed payload threats that deploy their payload in atimeframe which is smaller than the response time of
anti-virus researchers.

If we assume that most mobile malware will be of the immediate payload variety, then signature
scanning technology will provide little value to corporations and end users against thisthreat. 1f we assume
that most mobile malware will implement delayed payloads, then signature scanning can be an effective
protection mechanism.

Given the dearth of real-world mobile code attacks, it is difficult to determine how well this
solution will protect users. However, with recent examples such asthe PICTURE.EXE Trojan, it would
seem that Trojan horses and other mobile code can gain large circulation and cause large amounts of
damage well before anti-malware vendors are able to analyze the mobile code threat and respond.

Heuristics

The heuristic scanner works by examining the program logic of executable files, document
macros, or diskettes to determine whether or not their program logic is capable of exhibiting viral or other
malicious behaviors. If the program logic appears to be malicious, the anti-malware product can alert the
user to the potential threat.

While many anti-virus products can detect a high percentage™" of new virus threats, it is not clear
that heuristic technology can be successfully adapted to other, more general types of malware. Viruses are
easy to detect heuristically because the vast majority infect files (disks) in very specific ways.
Consequently, it is easy to isolate the likely regionswhere viruses will be hiding and perform extensive
code analysis on these areas.

This task is much more difficult for generalized malicious mobile code. Unlike viruses which tend
to localize their malicious code (at the top or end of afile, for instance), general malicious mobile code can
haveitslogic distributed over megabytes of athe booby-trapped file. This makesthe timely code analysis
that isrequired by heuristics extremely difficult, if not impossible. Also, the high level nature of many
malicious programs (with the exception of viruses) also makes these threats difficult to detect heuristically.
If the malwareiswrittenin ahigh level language, it's malicious logic is not only distributed through the
executablefile, but will also be much harder to isolate and identify. Hand-written assembly language
routines are extremely easy to analyze because they are purposeful in their actions. Assembly language
generated from high level languages is for more obscure and difficult to reverse engineer.

Also, given that malware authors can obtain the same anti-malware products used by their targeted
victims, these authors can also “tweak” their malware creations to avoid detection by these products.

Import Scanning

For amaliciousvirus, Trojan, Javaor ActiveX applet to propagate itself or do damage, it must call
upon the operating system. For instance, it must ask the operating system to delete files, to format the hard
drive or to connect to arogue web site and export data.

If amalicious Windows (ActiveX) program or Java applet does call on the operating system, it
will have aninternal list of all of the operating system functionsthat it requiresin order to do its damage.
Thisiscalled theimport list and isfound in every Java, ActiveX and Windows program file. For instance, a
cute graphics applet might use the following operating system functions. “DrawCircle,” “ ShadeCircle,”
“ShowWindow.” On the other hand, arogue applet might use “ DrawCircle” and “ DeleteFile.” DrawCircle
would draw acute circle on the screen while DeleteFile deleted all the user’ sfiles.

Import scanning products work by examining the list of operating system functions that an applet
or program needsin order to do itswork. These products have profiles of what types of functions are
allowed and which are disallowed in the enterprise. If al of the functions referred to by an applet/program
are on the approved list, the software is allowed into the enterprise. If any of them are found on the
unapproved list, the applet can be quarantined and rejected.

Import scanners are prone to both fal se positives and fal se negatives. For example, many useful
programs/applets may need to delete files or open an Internet connection and will refer to these operating
system functionsin their import lists. Unfortunately, the Import Scanning software cannot determine the
“goodness’ or “badness’ of an applet; it can only determine whether or not the mobile code uses operating
system functions that can potentially do bad things.

Unfortunately, malicious applets can be designed to conceal their reliance on the operating system.
Many of today’ s 32-bit Windows viruses call upon the operating system in obfuscated ways; the import
tablesin infected files do not refer to any suspicious operating system functions. Y et these programs are
fully capable of infecting other files. Import Scannerswill fail to filter such mobile code, allowing them to
wreak havoc in the enterprise. Luckily, it ismore difficult to hide reliance on the operating system in Java
programs; so thistechnology may be more effective at protecting against malicious Java applets. However,
Javaisthe safest mobile code platform already!

Digital Signatures

Both Netscape Navigator and Internet Explorer support digital signatures and certificatesto
protect against malicious Java code, JavaScript and ActiveX components downloaded over the Internet".
In addition, a number of gateway products also provide ActiveX and Javasigning functionality. Eachtime
an applet or ActiveX control is downloaded from aweb site, it may be accompanied by a certificate. This
certificate can be used to authenticate the origin of the applet and verify that its content has not changed
since the devel oper distributed it.

Web browsers can be configured to prompt the desktop user each time they encounter a signed
applet and allow them to accept or reject the applet. Alternatively, the browser can be configured to
automatically allow or disallow either applets which are unsigned, or applets which are signed by providers
on an accepted list or arejected list.

If aweb surfer encounters asigned ActiveX component on the web, the surfer has two choices: to
refuse the component or to allow it onto the system with the full security privileges of the surfing user. If
the user can open document files, the ActiveX component can; if the user can change the registry, so can
the component. In contrast, Java code signing provides more granular security. Signed Java programs can
be given access to some system resources and denied access to other resources. For example, Internet
Explorer provides the following YES/NO options for signed Java applets:

1. Ability to manipulate groups of applets (threads) running on your conputer.
2. Ability to accept connections from other computers on a network.

Ability to load restricted Java system code.

Ability to display windows that don’t have the unsigned applet label.
Ability to manipulate other applets (threads) running on your computer.
Ability to use native code stored in dynamically linked libraries.

[SECLEE <

Digital signatures effectively protect against stationary types of malware since they allow the
client to determine exactly who produced the content in question (in fact, digital signatures create
stationary content). The liability introduced by digital signaturesis a strong motivator for the applet
provider to deliver non-malicious software. Unfortunately, digital signatures can sometimeslend afalse
sense of security. If atrusted vendor inadvertently infects an ActiveX component with a Windows virus
and then signs this infected component, an unsuspecting web surfer may unwittingly contaminate their
system with avirus.

URL and Attachment Blocking

URL Blocking technology prevents users from surfing to WWW sites that have potentially
malicious content. Thistechnology can block sites based on their URL, their | P address or the textual
content of their web pages (for instance “ get the latest Back Orifice Trojan here”). Thistechnology is
typically implemented on an HTTP proxy or directly on the firewall in corporations; this allows for easy
centralized policy management and reduces the costs of individual desktop configuration. Alternatively,
this technology can be deployed on each desktop, but thiswill result in higher maintenance costs (for
instance, to update the list of blocked sites).

File and attachment blocking is atechnology which can be implemented at the HT TP gateway, the
e-mail gateway or at the groupware server. Thistechnology strips all possible malware content from web
traffic and e-mail attachments before the content reaches users. All executabl e programs can be removed
from the e-mail or filtered from web pages, while document macros can be stripped, leavingthe
accompanying document intact. This stripping process should be applied to content coming into the
enterprise from the Internet asthis content isless likely to be safe. Depending on the level of blocking—
blocking all executable content vs. just suspicious content - such a solution can cause varying amounts of
inconvenience for employees; however, blocking executable content is one of the most effective waysto
ensure a saf e computing environment.

Behavior Blocking

When installed, the behavior blocker integrates into the operating system on the client machine
and watches for malicious program behaviorsin real time. Aswe have seen, all malicious applets must
utilize the operating system in order to perform their malicious actions. The behavior blocker intercepts
these requests before they can reach the operating system and alerts the user or administrator. Sincethe
behavior blocker integrates directly into the operating system, it can trap awide variety of operating system
requests regardless of whether or not the mobile code attempts to obfuscate its use of these functionsin its
code; eventually the malicious code must interact with the operating system and its actions will be caught.

The exception to this rule istunneling malware; this termis used to refer to malware which
specifically attempts to bypass behavior blocking technology. A small number of DOS viruses already
employ these techniques, although no other malware is known to use this technique.

Behavior blocking technology can be used to protect against virtually all types of malware. There
are two major drawbacks to this technology:

1. The malicious mobile code must actually be running and trying something harmful in order to
be caught and terminated.

2. Someactions carried out by programs may not be malicious, yet appear malicious. Likethe
import scanner, the behavior blocker has a hard time distinguishing good behavior from bad.

Consequently, existing behavior blockers tend to generate false alarms and can be obtrusive to
users.

While most behavior blockers have been implemented as desktop-based solutions, at |east one
vendor has created a gateway-side behavior blocker for Java. As Java programs are downloaded from the
web by end-users, they are detoured to a high-powered Java server. The applets are allowed to run on this
server and al 1/O is provided to the user so they receive the same web experience. If amalicious applet
attempts to access any data or cause harm, these attacks are restricted to the Java server, protecting data on
the corporate desktops and servers.

Seven Suggestions for Safeguarding Your Corporation

Each of the anti-malware technol ogies described above can help to prevent malware from
becoming aliability to the enterprise. How should your organization use these piecesto yield the highest
level of security with the least amount of intrusiveness for your users. A seven-part answer to this question
is presented below; each additional suggestion yields more robust malware security; however, each
successive recommendation may also result in amore obtrusive solution for you and your users. By
determining the security needs of your organization, you can use these suggestions to implement an
effective malware strategy.

Run Anti-malware Software On All Desktops, Servers and Gateways

Itiscritical to run anti-virus (anti-malware) software on the desktop, at the gateway (e-mail or
firewall), on file servers and on groupware servers. Most anti-virus solutions also detect and remove
known mobile code threats in addition to viruses and Trojan horses. In addition, anti-virus software has
had the longest time to evolve. Most anti-virus products use a number of technologies (such as those
described above) in concert, enabling these products to detect the widest variety of threats. Many anti-virus
products employ signature scanning, heuristic scanning and behavior blocking technologies.

A multi-tier anti-malware solution will protect your users against a huge number of existing
threats and limit your organization’s vulnerability to some new and unknown threats. Remember, it’s
critically important to keep all of your anti-virus signatures files and engines as up-to-date as possible and
consistent across all platformsto protect against the latest malware threats!

Install URL blocking software at the gateway or the desktop

URL blocking software can be used to prevent your users from surfing to anumber of
productivity-draining sites. It can also prevent your usersfrom going to known Vx (Virus Exchange) sites
and downloading viruses for experimentation. In most cases, URL blocking software will not hinder your
employees from doing their work and will prevent some infections by malware or viruses.

Unfortunately, URL blocking softwareis only useful for blocking known malware sites or sites
which specifically indicate that malware is available (if content scanning/blocking is employed, the
software can check for text like “get viruses here” in the web page and block the site). This means that
URL blocking will not help to protect against:

1. Web siteswhich are not known malware distribution centers and that intentionally post
malicious attacks to harm users.
2. Web siteswhichinadvertently post malware without knowing it.

Only Allow ActiveX From A Limited Set Of Authenticated Providers

If your users do not need to use ActiveX or Netscape plug-ins to do their work, it makes sense to
configure your corporate web browsers or HTTP proxy to reject all ActiveX controls or plug-ins. Aswe
have seen, ActiveX components can perform any number of malicious attacks and should be considered
very dangerous. While liability issues (associated with stationary threats) may prevent ActiveX from
becoming amajor threat, eventually some attacker will weigh the profit of building and deploying this
malware vs. the potential liability of getting caught and initiate an ActiveX attack on end users or
corporations.

If disabling all ActiveX istoo restrictive for your users, you can also configure Internet Explorer™
to only allow properly signed ActiveX controls. Establish a short list of trusted partners and distribute their
digital certificatesto your desktops or to an HTTP proxy that can filter improperly signed ActiveX. This
will allow your employeesto use alimited set of trusted ActiveX and greatly reduce the risk of an attack.
Also, configure your desktop browser software to prevent it from allowing usersto add new trusted
signatures; thiswill ensure that your users don’t inadvertently invite signed malware from an untrusted
source into the enterprise.

If you use Netscape Navigator, you may want to configure Navigator to refuse all new plug-ins;
otherwise, your users may add their own plug-ins during web surfing which may open additional security
holesin your computing infrastructure. For instance, a Netscape plug-in is avail able that allows your users
to use ActiveX content in Navigator (Navigator does not support ActiveX on itsown). However, whilethis
plug-in does support ActiveX, it does not support code signing or digital certificates. Consequently, if your
usersinstall such aplug-in, they’ll be opening your network up for ActiveX-based attacks from both signed
and unsigned malicious components!

Java, JavaScript and VBScript Suggestions

With properly configured web browsers, unsigned Java, JavaScript and VBScript are very safe
platforms and can be used in the enterprise without significant risk to the corporate computing
infrastructure.

While unsigned Java appl ets and other script-based languages such as JavaScript run in a sandbox
and represent little risk to the enterprise, signed Java applets can request access the system and wreak
havoc just like ActiveX components. If your users do not need Java appl ets that have accessto the local
computer in order to dotheir work, configure your corporate web browsers or HTTP proxy to automatically
terminate/reject all Java applets that request additional accessto thelocal computer. Thiswill take the
decision-making power away from your users and ensure that all Java applets running in the enterprise run
in the safety of the Java sandbox.

If this measure is too restrictive for your users, you can also configure the major browsersto only
allow properly signed Java applets from a set of trusted partners. Establish alist of trusted Java-providing
partners and distribute their digital certificatesto your desktops or to an HTTP proxy. In thisway, properly
signed applets, and only these applets, will be allowed to access your local systems' resources, reducing the
risk of an attack.

It'sagood ideato configure your desktop browser software to prevent it from allowing usersto
add additional trusted signatures on their own. Also configure the desktop browser software to
automatically deny all requests by JavaScript, VBScript, etc. to access the local machine resources. By
default, the major browserswill prompt the user asking them if it isok for the script to accessthe
local computer. This decision should not be made by your employees; configure your browsers to deny
these requests automatically.

On those machines which have proprietary or mission critical information, we recommend that all
programmable content (and in fact all web browsing) be disallowed. If these machines are on the corporate

network, running a personal firewall on these boxeswill also help to reduce the risk of penetration to
infinitesimally low levels.

Computers with Java devel opment environments (and a CLASSPATH containing additional Java
components) can potentially be susceptible to attack by malicious Java applets. If a programmer (or Java
development environment) installs unsafe Java componentsinto directories specified in the CLASSPATH,
this can open the computer up to Java-based attacks. What isthe likelihood of this? If the Java
components in the CLASSPATH on such acomputer are all proprietary and not known to the general (and
hacking) population, the likelihood is that an attacker will have avery low probability of locating and
exploiting these holes. However, if acommon Java component installed by a Java devel opment
environment contains such ahole, it may be easily exploited. Here's arecommendation: If your
organization is extremely worried about security, isolate all machines with Java development environments
from the web (other suggestions: write a“shell” program that clears out the class path while a Java enabled
browser runs, have dual-boot machines with the Java development environment on one configuration and
web-surfing apps on the other.).

Obtain the latest patches for your web browser and e-mail products

Over the last few years, researchers have discovered a number of security holesin Internet
Explorer, Netscape Navigator and popular e-mail programs. Luckily, the rate at which holes are discovered
is slowing, indicating that these products are reaching alevel of acceptable security. In most cases when a
hole isfound, the discoverer works with the product vendor to remove the vulnerability as quickly as
possible.

While we have never encountered “in the wild” exploitation of any of the holes described in this
paper, it'sagood ideato keep up-to-date on these security holes by visiting your vendors' web sites and to
install the latest patches to your Internet-based software (We understand that it is costly to install new
updates, but it will help to ensure security). Alternatively, for those with proxy -based firewalls, it may be
possible to plug these holes on the firewall. Contact your firewall vendor for more information.

For security advisories, consult the Computer Emergency Response Team, a non-profit
organization run at Carnegie Mellon University: http://www.cert.org/ Also check http://www.sarc.com/ for
information on the latest malware threats.

Install Software To Filter Executable Files/Strip Macros From Incoming E-
mail and HTTP Traffic

SARC, the ICSA and others have found that the vast mgjority of all viruses and Trojan horses are
delivered viae-mail; while Trojan horses and viruses received in e-mail may not strictly constitute
malicious mobile code, they now constitute the majority of malware incidentsin the enterprise.
Conseguently, filtering incoming e-mail attachments that may harbor viruses or Trojan horseswill help to
solvethe very real problem of malware in the enterprise.

Some gateway anti-virus solutions can be configured to strip all incoming executable files and/or
strip the macros from incoming documents. This drastic measure may impact your users by denying them
access to needed executable or macro content. On the other hand, it will virtually neutralize the Internet as
asource of malware given the current landscape of the threat.

Conclusions

Mobile code is becoming an increasingly important component of the Internet experienceand in
many cases must be used to provide appropriate functionality for Internet applications. Today’s mobile

http://www.cert.org/
http://www.sarc.com/

code systems— Java, ActiveX, and the various scripting languages— provide varying levels of security and
varying levels of risk for the enterprise. Security flaws and holes have been discovered in virtually every
single mobile code platform, making the problem even more confusing.

Protecting the enterprise from virusesis afull-time job and adding mobile code to the landscape
only complicates matters. Unfortunately, many of today’ s computing systems are designed with
functionality and not security in mind. An important first step to providing effective security for your
organization is determining the required level of security and how much thiswill impact your users; this
paper lists anumber of increasingly secure (and increasingly obtrusive) security suggestions for protecting
against mobile code.

After understanding the security requirements for your corporation, the suggestions above will
help you deploy the proper products and policies to achieve a saf e computing environment with respect to
mobile code. Whilewritten policieswill have someimpact on security, enforceable, software-based
solutions are ultimately the best way to keep your users productive and your machines healthy.

The good news is that there are no known mobile code attacks that have actually targeted end-
users of corporations. The bad newsis that some of the mobile code platforms do have security holes
which make such attacks possible. Remember our “running with scissors example;” it’s not a safe thing to
do, but it rarely resultsin catastrophic damage. Likewise, mobile code can provide an equivalent threat to
your computing environment, although in practice (at |east today), it is more of apotential threat than areal
threat.

Good luck and safe computing— and don’t tease the (digital) animals!

' Based on all of the author’ s research, not asingle actual attack has been documented with Java or
ActiveX. While there are hundreds of malicious “proof of concept” mobile code attacks, the author is
unaware of anyone who has been exploited by such an applet.

"' We have one recorded stationary incident as of the writing of this paper, which did not use ActiveX or
Java, but a standard 32-bit Windows program. Ghosh, Anup, E-Commerce Security, Weak Links, Best
Defenses, 1998, pp 18-19.

""" McGraw, Gary and Felten, Edward, Java Security, Hostile Applets, Holes and Antidotes, 1996.

"V See http://www.symantec.com/avcenter/venc/data/pi cture-exe-th.ntml for more information.

VY Key grabbersinstall themselvesinto the operating system and record all keystrokes. Thiskeystroke list
can then be sent to an attacker to obtain passwords and other private information. Even if auser usesa
secure Internet connection, his or her keystrokes can still be grabbed and sent to an attacker.

V! Ghosh, Anup, E-Commerce Security, Weak Links, Best Defenses, 1998, pp 73-75

""" In searching the web, the author could only find one new invasion of privacy or system modification
attack discoveredin 1998.

V"' McGraw, Gary and Felten, Edward, Java Security, Hostile Applets, Holes and Antidotes, 1996, chapter
2, section 2. Thislistisapartial list intended for the administrator rather than the programmer.

When a software devel oper digitally signs a Java applet, a cryptographic check-sum is taken of the
Applet’ s binary contents. When the applet and its signature is later downloaded to an end-user’ s machine,
the browser computes a checksum of the contents of the applet and compares this to the original checksum.
If the two match, it is clear that the applet has not changed during transit and isas the software devel oper
originally intended.

* Definition: A native ActiveX virusis onewhich isimplemented in ActiveX and which only spreads to
other ActiveX components.

* The default Internet Explorer settings will prompt the user to approve the operation. More stringent
settings can be used to prevent the user from making this decision.

X" John Morar and David Chess, ‘Web Browsers—Threat Or Menace? , Proceedings of the Virus Bulletin
International Conference; Munich Germany; October 1998.

X ndustry estimates are that 70+% of DOS viruses can be detected heuristically, 90% of all macro and
boot viruses can be detected heuristically aswell.

http://www.symantec.com/avcenter/venc/data/picture-exe-th.html

XV Netscape Navigator has digital certificates for JavaScript, Internet Explorer has digital certificates for
ActiveX. Both support digital certificates for Java.

* Netscape Navigator/Communicator does not support ActiveX. Users of this software can obtain a
Navigator plug-in which allows ActiveX to be used; however, Navigator offers no code signing or

certification for ActiveX. It isrecommended, therefore, that ActiveX always be disabled under Netscape
Navigator.

